The chemical name you provided, **2-(1-methyl-4-oxo-3-furo[3,4]pyrrolo[3,5-c][1,2,4]triazinyl)-N-(3-phenylpropyl)propanamide**, describes a complex organic molecule with a very specific structure.
Let's break down the components:
* **2-(1-methyl-4-oxo-3-furo[3,4]pyrrolo[3,5-c][1,2,4]triazinyl)**: This part refers to a fused ring system containing a furan ring, a pyrrole ring, and a triazine ring. The 1-methyl indicates a methyl group (CH3) attached to the triazine ring. The 4-oxo indicates a carbonyl group (C=O) at position 4 of the triazine ring.
* **N-(3-phenylpropyl)**: This indicates a 3-phenylpropyl group (C6H5CH2CH2CH2) attached to a nitrogen atom.
* **propanamide**: This is the amide functional group (-CONH2) derived from propanoic acid.
**Importance in Research:**
The molecule described is likely a synthetic compound, and its importance depends on its specific properties and potential applications. Without additional context, it's impossible to say why it's important for research. However, here are some possibilities:
* **Drug discovery:** Many complex organic molecules are investigated for their potential therapeutic properties. This compound could be a candidate for a new drug, potentially targeting specific biological pathways or receptors.
* **Material science:** Some complex organic molecules have interesting electronic or optical properties. The compound might be investigated for its potential use in materials science applications like organic electronics or light-emitting devices.
* **Chemical synthesis:** The synthesis of the compound itself could be interesting for researchers working on developing new synthetic methods or studying the reactivity of complex organic molecules.
**To understand its true importance, you would need more information about the research context:**
* **What is the research area?** (e.g., medicinal chemistry, organic synthesis, materials science)
* **What are the intended uses or applications?**
* **What specific properties of the molecule are being investigated?**
By knowing these details, you can better understand the role of this compound in ongoing research.
ID Source | ID |
---|---|
PubMed CID | 9550667 |
CHEMBL ID | 1462339 |
CHEBI ID | 121683 |
Synonym |
---|
MLS000520564 , |
smr000130975 |
CHEBI:121683 |
AKOS001853225 |
HMS2374P15 |
CHEMBL1462339 |
2-(1-methyl-4-oxidanylidene-furo[3,4]pyrrolo[3,5-c][1,2,4]triazin-3-yl)-n-(3-phenylpropyl)propanamide |
2-(4-keto-1-methyl-furo[3,4]pyrrolo[3,5-c][1,2,4]triazin-3-yl)-n-(3-phenylpropyl)propionamide |
cid_9550667 |
bdbm62978 |
2-(1-methyl-4-oxo-3-furo[3,4]pyrrolo[3,5-c][1,2,4]triazinyl)-n-(3-phenylpropyl)propanamide |
2-(1-methyl-4-oxofuro[3,4]pyrrolo[3,5-c][1,2,4]triazin-3-yl)-n-(3-phenylpropyl)propanamide |
Q27210246 |
2-(12-methyl-9-oxo-5-oxa-1,10,11-triazatricyclo[6.4.0.02,6]dodeca-2(6),3,7,11-tetraen-10-yl)-n-(3-phenylpropyl)propanamide |
Class | Description |
---|---|
furopyrrole | Any organic heterobicyclic compound containing ortho-fused furan and pyrrole rings. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 50.1187 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 10.0000 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 22.3872 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 15.8489 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
Inositol monophosphatase 1 | Rattus norvegicus (Norway rat) | Potency | 1.2589 | 1.0000 | 10.4756 | 28.1838 | AID1457 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Hsf1 protein | Mus musculus (house mouse) | EC50 (µMol) | 195.0000 | 0.1600 | 24.4900 | 236.5000 | AID2382 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |